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Abstract 
 

In this paper, we proposed a novel modulation recognition method based on quantum elephant 
herding algorithm (QEHA) evolving neural network under impulse noise environment. We 
use the adaptive weight myriad filter to preprocess the received digital modulation signals 
which passing through the impulsive noise channel, and then the instantaneous characteristics 
and high order cumulant features of digital modulation signals are extracted as classification 
feature set, finally, the BP neural network (BPNN) model as a classifier for automatic digital 
modulation recognition. Besides, based on the elephant herding optimization (EHO) algorithm 
and quantum computing mechanism, we design a quantum elephant herding algorithm 
(QEHA) to optimize the initial thresholds and weights of the BPNN, which solves the problem 
that traditional BPNN is easy into local minimum values and poor robustness. The 
experimental results prove that the adaptive weight myriad filter we used can remove the 
impulsive noise effectively, and the proposed QEHA-BPNN classifier has better recognition 
performance than other conventional pattern recognition classifiers. Compared with other 
global optimization algorithms, the QEHA designed in this paper has a faster convergence 
speed and higher convergence accuracy. Furthermore, the effect of symbol shape has been 
considered, which can satisfy the need for engineering. 
 
 
Keywords: impulsive noise, adaptive weight myriad filter, instantaneous characteristics, 
high order cumulants, quantum elephant herding algorithm, BP neural network. 
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1. Introduction 

The purpose of communication is to transmit information through the channel and to achieve 
better data transmission, different modulation methods are generally used to modulate the 
transmission signal in the communication system.  Automatic modulation recognition as the 
intermediate processing of signal reconnaissance and signal demodulation is a crucial 
technology in the communications domain. The modulation method of identifying wireless 
communication signals is the basic technology in the fields of electronic countermeasures, 
electronic reconnaissance, non-cooperative communication, and wireless management. This 
technology has very wide application and significant value in the civil or military fields. 

At present, common modulation signal recognition mainly includes two methods. One is the 
test method of maximum likelihood hypothesis [1], other is the statistical pattern recognition 
method according to modulation signals feature extraction [2]. In theory, the performance of 
the test method of the maximum likelihood hypothesis is optimal. However, the computational 
complexity of this method is very high. When received prior knowledge is insufficient, it will 
cause great difficulties to modulation recognition, and this method has high requirements for 
the establishment of the likelihood function.   

The statistical pattern recognition method according to modulation signals feature 
extraction is another classic method of communication signal modulation recognition. It 
mainly observes the difference among the characteristic parameters corresponding to different 
types of modulation signals and selects the classification criteria that meet the requirements to 
make a decision.  And this method is mainly composed of three parts: signal preprocessing, 
feature extraction, and design classifier. The current commonly used modulation signal feature 
extraction method includes instantaneous amplitude, frequency ,and phase [3], high-order 
cumulants[4], wavelet-based features[5], and so on.  And then, the decision tree (DR) [6], 
support vector machine (SVM) [7], neural network [8], and other classifiers are trained 
according to the extracted feature parameters to realize the recognition of modulation signals. 
The statistical pattern recognition method will find a system that can automatically select the 
parameters for the modulation signals through a large enough feature training set. Moreover, 
neural networks and other pattern recognition methods consider all the features at the same 
time, so the detection speed is fast, the time sequence of the feature will not affect the correct 
detection probability, as well. 

It can be seen from the above literature that most modulation recognition methods are in a 
Gaussian noise environment. However, the electromagnetic environment faced by wireless 
communication is very complex, including various interferences and noises, and many of 
these signals and noises involved are non-Gaussian. Compared with Gaussian noise, one 
common feature of these noises and signals is they have significant impulsive characteristics 
and are often called impulsive noise, which can be simulation by alpha-stable distribution [9].  
Recently, some scholars have studied modulation recognition in impulsive noise environment, 
Câmara et al. [10] analyzed the characteristics of the cyclic correntropy function and fractional 
lower-order cyclic autocorrelation function in impulsive noise environment and designed a 
robust modulation recognition structure based on these two kinds of cyclic descriptors. X. 
Tian et al. [11] analyzed fractional low-order Choi Williams distribution transform and found 
it has better time-frequency performance in the impulsive noise environment, so the author 
combines convolutional neural network (CNN) and time-frequency distribution of modulation 
signal to realized modulation recognition in impulsive noise environment. C.C. Wang et al. 
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[12] used fractional lower order fast independent component analysis to remove the impulsive 
noise from the received signal and adopted local mean decomposition to overcome the modal 
aliasing problem, then extracted instantaneous characteristics of the signal, finally, the DR 
method is utilized for modulation recognition. 

The main method of modulation recognition in impulsive noise environment is to extract 
fractional low-order cyclic statistical features. This method has a good suppression effect on 
impulsive noise. However, this method has higher computational complexity, fewer types of 
features that can be extracted, and poor recognition performance under low mixed 
signal-to-noise ratio (MSNR). Therefore, this paper uses an adaptive weighted myriad filter 
[13] to preprocess the input signal to suppress impulsive noise, then extracts a variety of 
instantaneous characteristics and high order cumulant of modulation signals as classification 
features, and finally trains BPNN as a classifier to recognize BASK, QASK, BFSK, QFSK, 
BPSK, QPSK, OQAM and MSK under the impulsive noise environment. But initial 
thresholds and weights of the BPNN have a great influence on the recognition results, which 
leads to poor robustness and easily trapped into local minimum value. Hence, this paper 
designs a QEHA to search for optimal initial thresholds and weights. The simulation results in 
this paper show that the proposed method not only can identify a variety of digital modulation 
signals under the impulsive noise, but also has better suppression performance of impulsive 
noise and higher recognition accuracy, and the impact of symbol shaping [14] on the signal is 
considered, so it can meet the engineering needs better. The main contributions in this paper 
are summarized in three parts as follows. 

   The adaptive weighted myriad filter is used to preprocess the received modulation 
signals which passing through the impulsive noise channel. The simulation shows 
that it has a good suppression effect on the impulsive noise so that the instantaneous 
characteristics and high order cumulant can be extracted from the preprocessed 
modulation signals, which makes the classification feature set more diverse and can 
be applied this feature set for more kinds of modulation signals recognition. 

   We design a QEHA based on the EHO algorithm and quantum computing 
mechanism. We use the quantum rotation gate and quantum not gate to evolve the 
quantum state of the quantum elephant. In the process of evolution, past historical 
information of individuals is effectively used, and the global convergence ability of 
the algorithm is enhanced. Compared with some previous optimization algorithms, it 
has a faster convergence speed and higher convergence accuracy. And it can find the 
optimal parameter of BPNN. 

   We use the designed QEHA in this paper to optimize the initial thresholds and 
weights of the BPNN. The experiment result show this method obtains the optimal 
accuracy under the low MSNR in a modulation recognition system and overcomes 
the shortcomings of BPNN which is easily trapped in local minimum values and 
poor robustness. And compared with other pattern recognition methods, the 
recognition of QEHA-BPNN is significantly improved.  

The rest of this paper is systemized in the following: received signal preprocessing is shown 
in Section 2. In Section 3, the instantaneous characteristics and high order cumulant of 
modulation signals are extracted. In Section 4, BPNN based on QEHA for modulation is 
proposed. Experimental results are presented in Section 5 and the conclusion in Section 6. 
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2. Received Signal Preprocessing 
As shown in Fig. 1, the modulation type identified in this paper contains a variety of different 
modulation signals. These modulated signals pass through the symbol shaping filter at the 
transmitter, then arrive at the receiver through the impulsive noise channel, and the 
preprocessed signal is finally obtained via the adaptive weighted myriad filter. 

 
Fig. 1. Received signal preprocessing. 

2.1 Digital Modulation Model 
Digital signal modulation is to change and control some parameters of the carrier by 
modulating the signal. These parameters will change with some rules of the modulated signal 
itself.  The modulated signal can carry the same information as the original to ensure that the 
information is safe, effective, and lossless in the process of channel transmission. Different 
modulation types can be obtained by changing the frequency, amplitude, and phase 
characteristics of the carrier. The commonly used modulation types mathematical models are 
shown below. 

Amplitude-shift keying (ASK) mainly transmits signals by changing the amplitude of the 
carrier, and its expression is 

                                   ( )( ) ( ) cos 2π
MASK n s c

n
S t g t nT f tα ϕ = − +  

∑                                                 (1) 

where nα  denotes the level value of the n-th transmission symbol and {0,1,..., 1}n Mα ∈ − , M  
is the modulation number, cf  is the carrier frequency, ( )g ⋅  is the rectangular pulse with 
amplitude value of 1 and duration of sT , sT  is the symbol period, and ϕ  is the initial phase of 
the carrier. 

Frequency-shift keying (FSK) mainly transmits signals by changing the frequency of the 
carrier, which can be expressed as 

                                 ( )( ) ( ) cos 2π( )
MFSK s c n

n
S t g t nT f b f t ϕ = − + ∆ + 

 
∑                               (2) 

where nb  represents the frequency offset multiple of the n-th  transmission symbol and 

{0,1,..., 1}nb M∈ − , f∆  is the frequency offset of the carrier wave and is usually taken as 
1

2 sT , 

and the initial phase ϕ  of MFSK modulation is generally taken as 0. 
Phase-shift keying (PSK) mainly transmits signals by changing the phase of the carrier, and 

its expression is 

                                        ( )( ) ( ) cos 2π
MPSK s c n

n
S t g t nT f t ϕ = − +  

∑                                             (3) 

where nϕ  represents the phase corresponding to the n-th  symbol, 2π( 1) /n n Mϕ = −  and 
1,2,...,n M= . 
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Quadrature amplitude modulation (QAM) mainly transmits signals by changing the 
amplitude and phase simultaneously of the carrier, and its expression is 

                                        ( )( ) ( ) cos 2π
MQAM n s c n

n
S t a g t nT f t ϕ = − +  

∑                                      (4) 

where na  represents the amplitude of the n-th transmission symbol, nϕ  denotes the initial 
phase of the n-th transmission symbol. 

Minimum shift keying (MSK) mainly transmits signals by changing the frequency of the 
carrier which is a special kind of continuous phase frequency shift keying, and its expression is 

                                              
π

( ) cos 2π
2

n
MSK c n

s

b t
S t f t

T
ϕ

 
= + + 

 
                                                  (5) 

where nb  represents the n-th  transmitted symbol, and nϕ  represents the initial phase of the 
n-th transmission symbol. 

2.2 Shaping Filter 
The digital baseband signal is a rectangular wave without symbol shaping, which is infinitely 
extended in the frequency domain. In a signal with limited bandwidth, it will cause waveform 
distortion at the receiver. In order to eliminate waveform distortion and ensure no new inter 
symbol interference, in practice, the transmitter will adopt a raised cosine roll-off function to 
shape the digital baseband signal. The expression of the raised cosine roll-off function is: 

                                                     2 2 2

sin(π / ) cos( π / )( )
(π / ) 1 (4 / )

t T t Tq t
t T t T

δ
δ

=
 − 

                                           (6) 

where t  is the sampling time, T  is the symbol period, and 3 3T t T− < < , δ  is the roll-off 
factor. 

2.3 Impulsive Noise Model 
Impulsive noise refers to some noise that has a significant spike pulse waveform and 
heavy-tailed behavior in the practical wireless communication system. Generally, alpha-stable 
distribution is used to establish the simulation model of impulsive noise, and which is defined 
by the following characteristic function: 

                                   

πexp 1 sgn( ) tan ,  1
2

( )
2exp 1 sgn( ) log ,  1
π

j t t j t if
t

j t t j t t if

α

α

αµ γ β α
ϕ

µ γ β α

    − + ≠        = 
   − + =     

                           (7) 

where 
1, 0

sgn( ) 0, 0
1, 0

t
t t

t

>
= =
− <

, 0 2α< ≤  is the characteristic exponent, which is related to the 

impact of alpha-stable distribution, 1 1β− < ≤  is the symmetrical parameter, which indicates 
the symmetry degree of alpha-stable distribution, 0γ ≥  is the dispersion coefficient, which 
represents the dispersion degree of alpha-stable noise, µ  is displacement parameter, µ is 
median value when 0 1α< ≤ , and µ  is mean value when 1 2α< ≤ . 

Because the stable distribution has no finite second-order moment, so MSNR is usually 
used to describe SNR in the impulsive noise environment 
                                                             ( )210 log10 /dB sMSNR σ γ=                                           (8) 
where 2

sσ  is signal variance. 
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2.4 Adaptive Weighted Myriad Filters 
There are mainly two methods for modulation recognition in an impulsive noise environment, 
one is to extract the features of fractional lower order statistics which are also effective in the 
non-Gaussian environment [9-11], and the other is to remove impulsive noise [12]. In this 
paper, an adaptive weight myriad filter [13] is used, which can effectively remove impulsive 
noise and extract information with less distortion.  

The sample myriad is denotes as the maximum likelihood estimation of the location 
parameters of the data, and these data obey the Cauchy distribution. Define the input vector 

T
1 2[ , ,..., ]Nx x x=x  and weight vector T

1 2[ , ,..., ]Nω ω ω=ω , for a given linearity parameter K , it is 
assumed that the random variable obeys the Cauchy distribution of the position parameter θ  
and the scale parameter 1{ }N

i iS = , where  

                                                                 0i
i

KS
ω

= >                                                             (9) 

Then the weighted myriad can be denotes as 

                       ( )
2 2

1 1

ˆ , arg min 1 arg min 1
N N

i i
i

i ii

x x
S Kθ θ

θ θ
θ ω

= =

    − −  = + = +            
∏ ∏ω x                      (10) 

Since log( )⋅  is a strictly increasing function, weight myriad can also be expressed as 

                                               ( )
2

1

ˆ , arg min log 1
N

i

i i

x
Sθ

θ
θ

=

  −
 = +  
   

∑ω x                                         (11) 

There are two important parameters in the weighted myriad filter, the linearity parameter K  
and the weights ω . The linearity parameter 0K >  is related to the characteristic exponent 
α and dispersion coefficient γ  of the impulsive noise. The empirical formula for K  is as 
follow 

                                                                    
2

K αγ
α

=
−

                                                       (12) 

The weights { } 10 N
i iω

=
≥  is calculated by the adaptive weight estimation method based on the 

minimum root mean square. If the input of weighted myriad filter is 1{ }N
i ix = , and the output is 

( , )y ω x , the expected output value is d , the adaptive algorithm for updating the filter weight 
iω  is as follow 

( )
2

2
2

( )
( 1) ( ) sgn( ) ( )

1

i
i i

i
i

y x
n P n l d n

y x
K

ω ω λ
ω

 
 

− + = + − × 
  + −    

                      (13) 

where λ is step size and the function ( )P ⋅  is defined as : 

                                                       ( )
, 0

=
0, 0
u u

P u
u
>

 ≤
                                                                  (14) 
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3. Feature Set 
In this paper, the statistical pattern recognition method according to modulation signals feature 
extraction is adopted. The classification criteria that meet the requirements are selected to 
make a decision by observing the difference among the corresponding feature parameters of 
different types of modulation signals. Constructing feature sets that can distinguish different 
modulation signals is an important part of this method. This paper mainly extracts 
instantaneous characteristics and high-order cumulant features of modulation signals to 
construct a feature set. 

3.1 Instantaneous Feature  
The frequency, amplitude, and phase of the communication signals contain modulation 
information. The instantaneous frequency, amplitude, and phase of the signal can be extracted 
from the received modulation signal, and some characteristic parameters can be constructed 
from these instantaneous parameters, which are called instantaneous features. The extracted 
instantaneous feature technique for modulation recognition as following. 
1) Average value of instantaneous amplitude envelope 

                                                                      a
1

1 ( )
N

i
m A i

N =

= ∑                                                       (15) 

where ( )A i  is the instantaneous amplitude of communication signal, and N  denotes the 
number of samples. The average value of instantaneous amplitude envelope reflects the 
change characteristics of communication signal envelope. 
2) The maximum value of the instantaneous amplitude power spectral density of the 

normalized center 
                                                            2

max cnmax ( ( )) /r DFT A i N=                                         (16) 
where ( )cnA i  is the value of instantaneous amplitude of the normalized center, and it is defined 
by 

( ) ( ) 1cn nA i A i= −                                                     (17) 

where 
( )( )n

a

A iA i
m

= .  The maximum value of the instantaneous amplitude power spectral 

density of the normalized center maxr  represents the change of instantaneous amplitude of 
signal, which can distinguish constant envelope modulation and non-constant envelope 
modulation. 
3) Standard deviation of the instantaneous amplitude of the normalized center of the 

non-weak signal segment 

                                                     
n n

2

2
da cn cn

( ) ( )

1 1( ) ( )
t tA i a A i a
A i A i

W W
σ

> >

   
= −   

   
∑ ∑                            (18) 

where W  is the number of non-weak signal values in all N  samples, and non-weak signal 
refers to a signal which signal amplitude ( )nA i  is greater than the amplitude decision threshold 
level ta . 
4) Standard deviation of the absolute value of the instantaneous amplitude of the normalized 

center 
2

2
aa cn cn

1 1

1 1( ) ( )
N N

i i
A i A i

N N
σ

= =

   = −   
   
∑ ∑                                   (19) 

5) Kurtosis of the normalized-centered instantaneous amplitude 
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24 2
42 cn cnE ( ) / E ( )a A i A iµ    =                                           (20) 

6) Standard deviation of the centered non-linear components instantaneous phase in 
non-weak signal segment 

n n

2

2
dp NL NL

( ) ( )

1 1( ) ( )
t tA i a A i a

i i
W W

σ φ φ
> >

   
= −      

   
∑ ∑                               (21) 

where NL ( )iφ  is the normalized-centered non-linear component of the instantaneous phase, and 
it is defined as follows 

NL 0( ) ( )i iφ φ φ= −                                                         (22) 

where 0
1

1 ( )
N

i
i

N
φ φ

=

= ∑ . 

7) Standard deviation of absolute value of intermediate nonlinear component of 
instantaneous phase in non weak signal segment 

n n

2

2
ap NL NL

( ) ( )

1 1( ) ( )
t tA i a A i a

i i
W W

σ φ φ
> >

   
= −      

   
∑ ∑                                 (23) 

8) Variance of normalized instantaneous frequency 

                                                        
2

2
f

1 1

1 1( ) ( )
N N

i i
f i f i

N N
δ

= =

 
= − 

 
∑ ∑                                                   (24) 

where ( )f i  is instantaneous frequency. 
9) Standard deviation of absolute value of instantaneous frequency centered on 

normalization in non weak signal segment 

n n

2

2
af N N

( ) ( )

1 1( ) ( )
t tA i a A i a

f i f i
W W

σ
> >

   
= −      

   
∑ ∑                                (25) 

where 
N c b( ) ( ) /f i f i r=                                                           (26) 

s

c
1s

1( ) ( ) ( )
N

i
f i f i f i

N =

= − ∑                                                    (27) 

br  is the symbol rates. 
10) Kurtosis of the normalized-centered instantaneous frequency 

4 2 2
42 cn cnE[ ( )] / E[ ( )]f f i f iµ =                                                 (28) 

where, ( ) ( )
1cn

f

f i
f i

m
= − , ( )

1

1 N

f
i

m f i
N =

= ∑ . 

3.2 High Order Cumulants 
High order cumulant features are widely used in the field of digital modulation recognition. 
For a zero-mean complex stationary process ( )X t , the p -order mixing moment is defined as 

                                                        [ ]{ }*( ) ( )
qp q

pqM E X t X t−  =                                                 (29) 

Where ‘*’ denotes conjugate. Then the expression of each order cumulant is 
1) Second-order cumulant 

[ ]{ }2
20 20 ( )C M E X t= =                                                (30) 

2
21 21 ( )C M E X t= =                                                     (31) 

2) Forth-order cumulant 
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                                                            ( )2
40 40 203C M M= −                                                      (32) 

                                                            41 41 20 213C M M M= −                                                     (33) 
                                                        ( )2 2

42 42 20 212C M M M= − −                                              (34) 
3) Sixth-order cumulant 
                                                     ( )3

60 60 20 40 2015 30C M M M M= − +                                           (35) 

( )2 3
63 63 42 21 20 21 219 9 12C M M M M M M= − + +                                (36)   

The selected four identification parameters are set as 40
1

42
s

C
f

C
= , 41

2
42

s

C
f

C
= , 60

3 3
21

s

C
f

C
= , and 

63
4 3

21
s

C
f

C
= . 

4. BPNN Based on QEHA for Modulation Recognition 
Classifier design is an extremely important part of modulation signal recognition. The 
previous signal preprocessing and feature set construction determines the superior limit, and a 
good classifier can make the recognition result approach the superior limit. With the 
continuous development of machine learning, the BPNN as a classifier is widely used in the 
domain of pattern recognition, which has strong self-learning and self-adaptive capabilities 
and can deal with complex nonlinear problems. This section introduces the application of a 
backpropagation neural network based on the quantum elephant herding algorithm 
(QEHA-BPNN) in wireless communication modulation recognition. 

4.1 Quantum Elephant Herding Algorithm (QEHA) 
The EHO algorithm is a global random search algorithm proposed by Wang et al. [15]  which 
is based on the study of the herding behavior of the elephant group. EHO algorithm has been 
widely used in optimizing machine learning. In the literature [16], use EHO algorithm to 
optimize neural network and applied to cancer prediction, the simulation shows that the 
modulation recognition accuracy is significantly improved. However, the EHO algorithm does 
not change the information of the elephant individual, and the search is affected by the 
unreasonable convergence of the update operator [17]. For this reason, this paper proposed a 
quantum elephant herding algorithm (QEHA), which uses signal chain coding, quantum 
rotation gate, and quantum not gate to evolve its quantum position. 

Quantum computing is a research field including quantum mechanical computers and 
quantum algorithms. The combination of quantum mechanics and other classical optimization 
methods mainly focuses on two aspects: one is design new quantum algorithms in classic 
computers; the other is to introduce the quantum idea into classical optimization algorithms 
and improve traditional algorithms to obtain a better performance [18]. QEHA is based on the 
second consideration. 

Based on quantum state evolution of elephant herding behavior, a novel QEHA is proposed. 
In a D-dimensional problem, at the beginning of QEHA, the quantum position of  P  elephants 
are randomly generated within the domain of the qubit, the quantum position of a quantum 
elephant is represented by a string of qubits. And a qubit can be represented by a complex pair, 
which can be express as ( , )Tα β , where 2 2 1α β+ = . The  quantum position of i-th 
( 1,2,...,i P= ) quantum elephant of the t-th iteration can be defined as 
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                                                             ,1 ,2 ,

,1 ,2 ,

, ,...,

, ,...,

t t t
i i i Dt

i t t t
i i i D

α α α

β β β

 
=  
  

w                                                 (37) 

where 
2 2

, , 1t t
i j i jα β+ = ,in which 1,2,...,j D= , ,

t
i jα  and ,

t
i jβ  are defined as ,0 1t

i jα≤ ≤  and 

,0 1t
i jβ≤ ≤  respectively. Because of 2

, ,1 ( )t t
i j i jβ α= − , the quantum position of the i-th 

quantum elephant can be defines as 

,1 ,2 , ,1 ,2 ,, ,..., , ,...,t t t t t t t
i i i i D i i i Dw w wα α α   = =   w                             (38) 

where ,0 1t
i jw≤ ≤ ,  and ,

t
i jw  denotes the j-th quantum bit of the quantum elephant i. The 

mapping position of the i-th quantum elephant is obtained by  

( )min max min
, , , , ,

ˆ ˆ ˆ ˆt t
i j i j i j i j i jw w w w w= + − ⋅� � � � �                                          (39) 

where ,
ˆ t

i jw�  represent the j-th position of the i-th quantum elephant in t-th iterations, max
,

ˆ
i jw�  and 

min
,

ˆ
i jw�  is the upper bound and lower bound of the searching range respectively. The position of 

each quantum elephant corresponds to a feasible solution of the optimization problem.   
In an evolution, all the elephants are arranged in ascending order according to their fitness 

values ( )ˆ t
if w , where ( )f ⋅  is fitness function. Then all the elephants are divided into M  clans, 

and each clan contains n  elephants ( P M n= × ). In the process of division, the first elephant 
entered the first clan, the second elephant entered the second clan, … , the M -th elephant 
entered the M-th clan, then the 1M + -th elephant into the first clan, and so on, until all the 
elephants are divided. The elephant with most suitable in each clan is the matriarch, which will 
affect the quantum position update of other elephants in the clan updating operator, while the 
elephant which has worst fitness value will perform the separation operator, so that the search 
has a better distribution in each generation. 

Elephants in each clan live under the leadership of matriarch, so the next generation 
quantum position of each elephant is influenced by the matriarch and implement clan updating 
operator. Therefore the j-th qubit of the i-th elephant quantum position in the m-th clan is 
updated as follows 

( ) ( ) ( ) ( ) ( ) ( )1
, 1 , , 2 , ,1t t t t t t t

i j i j b j i j c jm r w m w m r w m w mθ τ τ+    = − + − −                              (40) 

( )
( )( ) ( )

( ) ( ) ( )( ) ( )

2 1
, , 3 1

1
, 21 1

, , , ,

1 ,     if =0 and ;

abs cos 1 sin ,     else.  

t t t
i j i j

t
i j

t t t t
i j i j i j i j

w m m r c
w m

w m m w m m

θ

θ θ

+

+

+ +

 − <=    ⋅ + − ⋅   

              (41) 

where 1,2,...,i n= ; 1, 2,...,j D= ; 1, 2,...,m M= ; 1
tr , 2

tr  and 3
tr are random number in the range 

of 0 and 1; t  represents the number of iterations; 1 1/c D≤  is the mutation probability; 
[0,1]τ ∈  is the influencing factor, which determines the influence of the matriarch on the 

position of the next generation; ( ) ,1 ,2 ,( ), ( ),..., ( )t t t t
b b b b Dm w m w m w m =  w  is the quantum position 

of the elephant with the best fitness value in the clan m, that is, the quantum position of the 
matriarch; ( ) ,1 ,2 ,( ), ( ),..., ( )t t t t

c c c c Dm w m w m w m =  w  is the center position of the clan m, which can 
be expressed as the following formula 



2366                                                                                        Gao et al.: Evolutionary Neural Network based on Quantum Elephant 
Herding Algorithm for Modulation Recognition in Impulse Noise 

( ) ( ), ,
1

1 n
t t
c j i j

i
w m w m

n =

= ×∑                                                  (42) 

When the male elephant reaches puberty, it will leave their clan and live alone away from 
the elephant population. When solving optimization problems, this behavior can be modeled 
as separation operator. The elephant with the worst fitness value as an adult elephant will 
implement the separating operator as follows 

( ) ( ) ( ) ( )1
1 , , 2 , ,

t t t t t t t t t
j j d j g j j d j c jm r s w m w r s w m w mθ +    = − + −                                  (43) 

( )
( )( ) ( )

( ) ( ) ( )( ) ( )

2 1
, 3 2

1
21 1

, ,

1 ,     if =0 and ;

abs cos 1 sin ,     else.  

t t t
d j j

t
j

t t t t
d j j d j j

w m m r c
w m

w m m w m m

θ

θ θ

+

+

+ +

 − <=    ⋅ + − ⋅   

              (44) 

where 1
tr , 2

tr  and 3
tr  are random number in the range of 0 and 1; 

( ) ,1 ,2 ,( ), ( ),..., ( )t t t t
d d d d Dm w m w m w m =  w  is the worst elephant individual in clan m ; 

,1 ,2 ,, ,...,t t t t
g g g g Dw w w =  w is the elephant quantum position with the best fitness value in the entire 

population; The chaotic variables t
js  and t

js  satisfy the chaotic equation ( )1 14 1t t t
j j js s s− −= −  and 

( )1 14 1t t t
j j js s s− −= −  respectively; 2 1/c D≤  is the mutation probability. 

4.2 BPNN Optimized by QEHA 
Because the neural network has powerful pattern recognition capabilities, each node in the 
neural network automatically and adaptively selects the threshold of the characteristic 
parameter and considers all the characteristic parameters simultaneously so that the 
modulation recognition accuracy is not restricted by the order of using characteristic 
parameters. This paper uses BPNN with three-layer network structure as the classifier. The 
number of nodes in the input layer and output layer is determined by the number of input 
features types and the number of output modulation signal types, respectively. Gave the 
formula to determine the number of hidden layer nodes  

ˆ ˆ ˆh m n a= + +                                                     (45) 

where m̂ is the number of input features types; n̂ is the number of output modulation signal 
types; [ ]1,10a∈  is a constant, so the number of BPNN hidden layer nodes is an integer in 

range ˆ ˆ ˆ ˆ1, 10m n m n + + + +  . 
In general, the initial thresholds and weights in the BPNN are usually taken as a random 

number between -1 and 1, which will affect the training speed, training results, and 
convergence, resulting in poor robustness of the BPNN. Therefore, obtaining the optimal 
initial weights and thresholds will greatly enhance the performance of the BPNN. In this paper, 
the QEHA is utilized to optimize the initial thresholds and weights of the BPNN, which is 
called QEHA-BPNN. 

In order to predict the output of the system, the feature set is utilized to train the BPNN, and 
the goal of fitness function is the mean absolute error (MAE) between the BPNN output layer 
output and the expected output. The optimal solution equation can be described as following 
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( )
ˆ

1

1 ˆˆ
ˆ

n

i i
i

f Y O
n =

= −∑w                                                  (46) 

where 1 2ˆ ˆ ˆ ˆ[ , ,..., ]Dw w w=w  is the combined vector of the initial weights and thresholds of the 
BPNN, so the initial weights is 1 1 2 1ˆ ˆ ˆ ˆ[ , ,..., ]dw w w=w  and thresholds is [ ]1 1 1 2 2 2

ˆ ˆ ˆ ˆ, ,...,d d db w w w+ +=  
between the input layer and hidden layer, and the initial weights is 2 2 1 2 2 3ˆ ˆ ˆ ˆ[ , ,..., ]d d dw w w+ +=w  
and thresholds is [ ]2 3 1 3 2

ˆ ˆ ˆ ˆ, ,...,d d Db w w w+ +=  between the hidden layer and output layer,where, 
ˆˆ1d n h= × , ˆ ˆˆ2d n h h= × + , ˆ ˆ ˆˆ ˆ3d n h h h m= × + + × , and D  is the total number of nodes in the 

neural network and which can be described as ˆ ˆ ˆˆ ˆ ˆD n h h h m m= × + + × + ; ˆ1 2
ˆ ˆ ˆ ˆ, ,..., nY Y Y =  Y  is the 

expected output; [ ]ˆ1 2, ,..., nO O O=O  is the predicted output.  

According to the above design and analysis, the flowchart of BPNN based on QEHA for 
modulation recognition proposed in this paper is shown in Fig. 2, and the implementation 
process is shown in the following steps. 

Step1: Initialize the parameters, including the total number of elephant groups P , the 
number of elephant clans M , and the number of elephants in each clan n , P M n= × ; the 
maximum number of iterations Gen; impact factorτ ; qubit mutation probability 1c  and 2c ; 
Generate the initial quantum position of the elephant in the quantum position domain 
randomly. 

Step2: Use (39) map the quantum position to the position, calculate the fitness value ( )ˆ t
if w  

of each elephant use  (46), and arrange the elephants in ascending order according to the 
fitness value. The quantum position of the elephant with the global optimal fitness value is 

t
gw . 
Step3: Divide all groups into M  clans, the quantum positions of elephants with the best 

fitness and the worst fitness in the m-th clans are recorded as ( )t
b mw  and ( )t

d mw  respectively.  
Step4: Use (40), (41), and (42) to perform the clan updating operator to update the elephant 

quantum position. 
Step5: Use (43) and (44) to execute the separation operator to replace the elephant 

individual with the worst fitness value in the clan. 
Step6: Merge the elephants of each clan, use (39) map the quantum position to the position, 

use (46) to calculate the fitness value ( )1ˆ t
if +w  of each elephant, and arrange the elephants in 

ascending order of fitness value to determine the elephant  position with the global optimal 
fitness value.  

Step7: If the stop condition is not meet, return to step 3, otherwise output the global optimal 
position 1 2ˆ ˆ ˆ ˆ[ , ,..., ]Dw w w=w , and terminate the algorithm. 

Step8: Training the network with optimal initial thresholds and weights, and then calculate 
the recognition accuracy of trained BPNN model. 
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Fig. 2. The flowchart of BPNN based on QEHA for modulation recognition. 

5. Simulation Results 
In this section, we evaluate the overall performance of the proposed BPNN based on QEHA 
for modulation recognition in impulsive noise environment. The modulation recognition 
signals include BASK, QASK, BFSK, QFSK, BPSK, QPSK, OQAM, and MSK. We use the 
MSNR to describe the signal and noise power ratio and given by equation (8), and the 
simulation parameter of modulation signals and alpha-stable distribution model is presented in 
Table 1. 

Table 1. Simulation parameters of modulation signals and alpha-stable distribution model  
Symbol Parameter Value 

δ  Rolloff factor 0.4 
sf  Sampling frequency 3.264MHz 

cf  Carrier frequency 408KHz 

Df  Symbol rate 38.4KHz 

df  Number of samples per symbol 85 

sN  Number of symbols in each signal 22 
β  Symmetrical parameter 0 
µ  displacement parameter 0 
α  characteristic exponent [0.1,1.9] 

MSNR mixed signal-to-noise ratio [-10,10] 
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The simulation parameters of the QEHA-BPNN is presented in Table 2. 

Table 2. Simulation parameters of QEHA-BPNN 
Symbol Parameter Value 

m̂  Number of input layer nods 14 
ĥ  Number of output layer nods 12 
n̂  Number of hidde layer nods 8 
lr  BPNN learning rate 0.01 

goal  BPNN training target error 0.001 
epochs  BPNN  maximum number of cycles 1000 

Gen  QEHA maximum number of iteration 100 
P  Population size of the quantum elephant herding 30 
M  Number of the clans 5 
n  Number of quantum elephant in each clans 6 
τ  Influencing factor 0.4 

5.1 Performance Comparisons of Adaptive Weighted Myriad Filter 
In this paper, we use an adaptive weighted myriad filter to suppress the impulsive noise. As 
showing in Fig. 3 representing the preprocessing processes of input digital modulation signal. 
Fig. 3 shows the preprocessing process of input digital modulation signal BFSK, Fig. 3 (a) 
shows that the BFSK modulation is used to transmit signals by changing the amplitude of the 
carrier, Fig. 3 (b) processes the input digital modulation signal BFSK through a shaping filter 
to eliminate the waveform distortion at the receiving end. Fig. 3 (c) shows the waveform of the 
output signal through an additive impulsive noise channel with 1.5α =  and 0MSNR = . And 
Fig. 3 (d) shows the waveform of the output signal after being processed by a weighted myriad 
filter. From Fig. 3 we can see the impulsive noise is removed and the feature of BFSK is 
retained.    
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Fig. 3. BFSK signal preprocessing process. 
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Fig. 4 shows the modulation recognition accuracy curve after processing by adaptive 
weighted myriad filter (My-BPNN) and the modulation recognition accuracy curve without 
the adaptive weighted myriad filters (Not-My-BPNN). The classifier is the traditional BPNN, 
under the conditions of MSNR = 0dB and the characteristic exponent α  is 0.1 to 1.9 with 
interval 0.1. By observing Fig. 4 the simulation shows that the modulation recognition 
accuracy is greatly increased after using the adaptive weighted myriad filter. And when the 
characteristic exponent 1.0α = , symmetrical parameter 0β =  and displacement parameter 

0µ = , the alpha-stable distribution is Cauchy distribution. Therefore, we can conclude that 
accuracy of modulation recognition when 1.0α =  is significantly higher than other cases. 
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Fig. 4. Overall recognition accuracy of passed adaptive weight Myriad filters and not passed adaptive 

weight Myriad filters with MSNR = 0dB in different  characteristics exponent. 

5.2 Performance Comparisons of QEHA-BPNN with Traditional Pattern 
Recognition Method 
In order to show off the experiment result, Fig. 5 exhibits the confusion matrix calculated by 
the proposed method QEHA-BPNN in the case of 0dB and 6dB MSNR respectively. By 
observing Fig. 5 (a) that the modulation recognition accuracy of OQAM and QASK signals is 
low, these two signals are prone to confusion, and the recognition accuracy of the remaining 
signals is above 90%. The main reason is that there are changes in the signal amplitude of 
these two kinds of signals, which leads to the high similarity of the extracted characteristic 
when the MSNR is low and making it hard to distinguish. By observing Fig. 5 (b) that when 
the MSNR is 6 dB, there are still a small number of samples that can not be distinguished 
between OQAM and QASK, but the recognition accuracy of each signal has been greatly 
improved and all achieve above 95%. 

We compare the proposed QEHA-BPNN model with different existing methods, the 
conventional BPNN approach [19], the SVM approach [7], and the random forest (RF) 
approach [20]. These four modulation recognition techniques are applied to identify 8 
modulation signals under the impulsive noise environment. Fig. 6 shows the overall 
recognition accuracy when the characteristics exponent α  is 1.5 and MSNR varies from 
-10dB to 10dB. It can be seen that the overall recognition accuracy is improved with the 
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increase of MSNR. It can be explained that the higher the MSNR, the closer the signal to the 
original appearance, making the extracted features easier to distinguish different modulation 
signals. Comparing the three traditional methods BPNN, SVM, and RF, the performance of 
SVM and RF is generally better than the conventional BPNN. Therefore, the QEHA is utilized 
to optimize the performance of the BPNN. It can be found that the recognition accuracy under 
the condition of MSNR ≤ 0dB is significantly higher than other methods, and the recognition 
accuracy is above 99% when MSNR greater than 2dB.  

 
Fig. 5. QEHA-BPNN confusion matrix for the modulation recognition. (a) MSNR = 0dB and (b) 

MSNR = 6dB. 
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Fig. 6. Overall recognition accuracy of 4 recognition approach with 1.5α =  in different MSNR. 
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Table 3 exhibits recognition accuracy for 8 modulation signals obtained by four methods 
respectively with characteristics exponent α is 1.5 and MSNR is 0dB. It is clearly seen from 
the table that the automatic modulation recognition accuracy of QASK and OQAM is lower 
than others, and the QFSK, QPSK almost achieve 100%. The QEHA-BPNN method achieves 
better results in the identification of various modulation signals. The simulation results show 
that this scheme can automatically search the initial weights and thresholds of the BPNN, 
thereby effectively identifying eight modulation signals, which also illustrate the effectiveness 
of our proposed QEHA-BPNN method in impulsive noise environment. 

Table 3. Recognition accuracy for 8 modulation signals with 1.5α =  and MSNR = 0dB. 
Modulation type Classifier 

QEHA-BPNN BPNN SVM RF 
BASK 97.1% 95.7% 93.1% 94.8% 
QASK 88.8% 82.5% 82.5% 81.9% 
BFSK 96.3% 94.8% 92.6% 91.4% 
QFSK 100% 99.7% 100% 100% 
BPSK 98.9% 98.0% 98.3% 96.8% 
QPSK 100% 100% 100% 100% 
MSK 99.4% 99.1% 99.4% 99.4% 
OQAM 88.3% 88.3% 88.5% 86.2% 

5.3 Performance Comparisons of QEHA-BPNN with Other Optimal Algorithm 
We also use other optimization algorithms to optimize BPNN further verify the effectiveness 
of the proposed algorithm, including the PSO-BPNN approach [21], GA-BPNN approach [22], 
BAS-BPNN approach [23], and EHO-BPNN approach. Fig. 7 shows the overall recognition 
accuracy of 5 optimization schemes and conventional BP neural network for 8 modulation 
signals recognition with 1.5α =  and MSNR changes from -10dB to 10dB and with  2dB 
interval.  
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Fig. 7. Overall recognition accuracy of 5 optimization schemes and conventional BPNN with 1.5α =  

in different MSNR. 
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From Fig. 7 we can observe that the recognition accuracy of the optimized BPNN by 

optimization algorithms is higher than conventional BPNN, indicating that the performance of 
BPNN can be improved by using optimization algorithm. The overall recognition accuracy 
curves of several optimization schemes take on a similar trend. The accuracy of the 
QEHA-BPNN method is slightly higher than other optimization methods at low MSNR, and 
all of them can achieve above 99% accuracy at high MSNR. The main reason is that these 
algorithms are based on the fitness value of the individual population to select the optimal 
value, which belongs to the global optimization method, thus reducing the possibility of the 
BPNN falling into a local minimum. However, the QEHA is improvement of the EHO 
algorithm, the biological mechanism is relatively simple, which makes it simpler to use and 
can achieve better results in most situations. Another advantage of QEHA is faster 
convergence speed, the simulation results are shown in Fig. 8. 

 
Fig. 8. Fitness value of 5 optimization 

algorithms with 1.5α =  and MSNR = 0dB in 
different iterations. 

 

Fig. 9. The training convergence 
performance of 5 optimization schemes and 

conventional BPNN with 1.5α = and MSNR = 
0dB in different epochs

 
Fig. 8 is a comparison curve of the optimal fitness value of each generation group of each 

algorithm under the condition that the characteristics exponent α is 1.5 and MSNR is 0dB in 
different iterations. It can be seen from the observation of Fig. 9 that the QEHA designed in 
this paper is significantly better than the other four algorithms in convergence speed and 
convergence accuracy is higher. Since the QEHA is based on the EHO algorithm and 
computing mechanism, uses quantum rotation gate and quantum not gate to evolve the 
quantum state of the quantum elephant. In the process of evolution, past historical information 
of individuals is effectively used, and the global convergence ability of the algorithm is 
enhanced.  

Fig. 9 is the training convergence curve of 5 optimization schemes and the conventional BP 
neural network with characteristics exponent α is 1.5 and MSNR is 0dB in different training 
epochs. In order to observe the curve more clearly, this paper takes the logarithm of mean 
squared error (MSE). The training performance intuitively reflects the superior capability of 
the QEHA, indicating that the initial weights and thresholds of the BPNN searched by QEHA 
reduce the possibility that the BPNN is trapped in local minimum, accelerates the speed of 
global error reduction, and has good anti-noise performance. 
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6. Conclusion 
In this paper, we designed a novel low complexity algorithm QEHA based on EHO algorithm 
and quantum computing mechanism and proposed a modulation recognition method based on 
adaptive weighted myriad filter and QEHA-BPNN model in impulsive noise environment. 
The modulated signals passing through the impulsive noise channel are first preprocessed by 
an adaptive weighted myriad filter to suppress impulsive noise. Subsequently, instantaneous 
characteristics and high-order cumulants features are extracted as the classification feature set. 
Finally, BPNN optimized by QEHA is used as a classifier to recognition eight kinds of 
modulation signals effectively. The experimental results show that the adaptive weighted 
myriad filter has a good suppression effect on impulsive noise, which greatly improves the 
accuracy of modulation recognition in impulsive noise environment. And compared with other 
traditional pattern recognition classifiers, the proposed QEHA-BPNN classifier has 
significantly improved the modulation recognition accuracy under the condition of low MSNR. 
Moreover, the QEHA designed in this paper can enhance the global convergence ability of the 
EHO, compared with other classical optimization algorithms, QEHA has faster convergence 
speed and higher convergence accuracy, which shows that QEHA has better versatility and is 
easy to transplant to other engineering optimization problems.  

The adaptive weighted myriad filter has the disadvantage of parameter estimation, so in 
future work, we will use an intelligent optimization algorithm to obtain the relevant 
parameters of the weighted myriad filter to reducing the dependence on prior knowledge. 
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